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Abstract. This article reveals an analysis of the quadratic systems that hold
multiparametric families therefore, in the first instance the quadratic systems

are identified and classified in order to facilitate their study and then the sta-

bility of the critical points in the finite plane, its bifurcations, stable manifold
and lastly, the stability of the critical points in the infinite plane, afterwards

the phase portraits resulting from the analysis of these families are graphed.

To properly perform this study it was necessary to use some results of the
non-linear systems theory, for this reason vital definitions and theorems were

included because of their importance during the study of the multiparametric
families. Algebraic aspects are also included.
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1. Introduction

Systems of differential equations are known to express a number of mathemat-
ical, physical and engineering situations. In particular, this article is based about
the study of all quadratic multiparametric subfamilies associated with the next
family: Given the family with a, b, c,m, k ∈ R.

(1.1)

{
ẋ = y
ẏ =

(
αxm+k−1 + βxm−k−1

)
y − γx2m−2k−1

We can find antecedents of the algebraic and qualitative studies of this family
in [1, 2, 3, 4]. Another algebraic and dynamical studies can be found in [5, 6].
In general, we can see qualitative studies about planar systems in [7] ,[8] and [9],
furthermore antecedents of applied bifurcations study in [10]. In the present work,
we take Proposition 4.1, pag 12, in [2, 3] which the goal of analyze each quadratic
subfamily equivalently to (1.1). Considering the constants a,b, c, and s, p, r ∈ Z+.
Then, we analyze different cases to determine quadratic systems attached to (1.1)
taking into account the regions in the space determined by the for the different
parameters.

For the study of the quadratic multiparametric families described by (1.1) where
we use different topics studied in [11],[12],[13] and [14]. Then, we find the critical
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points associated with each quadratic family and analyzing their stability in both
the finite and infinite planes, also we present a deeper study study determined by
regions to see the changes in stability of the critical points and from here analyze
bifurcations presented in some families. Finally, we used software like [14] and [15]
for the detailed construction of the behaviors by means of the global phase portrait
associated with each quadratic multiparametric family.

2. Preliminaries

In this section we provide the necessary theoretical background to understand
the rest of the paper.

A planar polynomial system of degree n is given by:

(2.1)
ẋ = P(x,y)

ẏ = Q(x,y)

Where P,Q ∈ C[x, y], and n is given by n = max(deg P,deg Q)
We denote the polynomial vector field associated to the system (2.1) like: By

X := (P,Q). The planar polynomial vector field X can be also written in the form:

X = P(x, y)
∂

∂x
+ Q(x, y)

∂

∂y
.

A differential equations associate to polynomial vector field of the form (2.1) is
given by:

dy

dy
=

Q(x,y)

P(x,y)
.

Theorem 2.1. Hyperbolic Singular Points Theorem.

Let (0, 0) be an isolated singular point of the vector field X, given by,

(2.2)

{
ẋ = ax+ by +A(x, y)
ẏ = cx+ dy +B(x, y)

Where A and B are analytic in a neighborhood of the origin with A(0, 0) = B(0, 0) =
DA(0, 0) = DB(0, 0) = 0. Let λ1 and λ2 be the eigenvalues of the linear part
DX(0, 0) of the system at the origin. Then:

(a) If λ1,λ2 are real and λ1λ2 < 0, then (0, 0) is a saddle, where separatrix call
(0, 0) in the directions given by the eigenvectors associated with λ1 and λ2.

(b) If λ1,λ2 are real and λ1λ2 > 0, then (0, 0) is a node. If λ1 > 0(λ1< 0)
then it is repelling or unstable (respectively attracting or stable).

(c) If λ1 = α+ βi y λ2 = α− βi with α, β 6= 0 then (0, 0) is a focus. If α > 0
or (α < 0) it is repelling or unstable (respectively attracting or stable).

(d) If λ1 = βi and λ2 =-βi, then (0, 0) is a linear center, focus or a center.

for a more detailed study, please see [13, pág 71]
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Theorem 2.2. Non-Hyperbolic Singular Points Theorem

Let (0, 0) be an isolated singular point of the vector field X given by:

(2.3)

{
ẋ = y +A(x, y)
ẏ = B(x, y)

Where X and Y are analytic in a neighborhood of the point (0, 0) y and consid-
ers the series expansion have expansions starting with terms of the second degree
in x and y. Let y = f(x) = a2x

2 + a3x
3 + . . . be the solution of the equation

y + A(x, y) = 0 in a neighborhood of the point (0, 0), and suppose you have the
following series expansion of the function F (x) = B(x, f(x)) = axm(1 + . . .) y
G(x) = (∂A

∂x + ∂B
∂y )(x, f(x)) = bxn(1 + . . .) where a 6= 0, m ≥ 2, and n ≥ 1. Then:

(1) If G(x) ≡ 0 and F (x) = axm . . . for m ∈ N with m ≥ 1 and a 6= 0, then:
(i) if m is odd and a > 0, then the origin of X is a saddle and If

a < 0, then it is a center or a focus.
(ii) If m is even then the origin of X is a cusp.

(2) If F (x) = axm + . . . and G(x) = bxn + . . . with m ∈ N, m ≥ 2, n ∈ N,
n ≥ 1, a 6= 0 and b 6= 0. Then we have:

(i) If m is even, and
(i.a) m < 2n+ 1, then the origin of X is a cusp.
(i.b) m > 2n+ 1, then the origin of X is a saddle-node.
(ii) If m is odd and a > 0, then the origin of X is a saddle.
(iii) If m is odd, a < 0 and
(iii.a) m < 2n+ 1, or m = 2n+ 1 and b2 + 4a(n+ 1) < 0, then the

origin of X is a center or a focus.
(iii.b) n is odd and either m > 2n + 1, or m = 2n + 1 and b2 +

4a(n+ 1) ≥ 0. Then the phase portrait of the origin of X consists of one
hyperbolic and one elliptic sector.

(iii.c) n is even and either m > 2n + 1, or m = 2n + 1 and b2 +
4a(n+ 1) ≥ 0. Then the origin of X is a node. The node is attracting if
b < 0 and repelling if b > 0.

For a more detailed study, see [13, pág 116]

2.1. Bifurcations. We consider the system, depend on a parameter λ:

(2.4) ẋ = f(x, λ)

If the change in λ that produces a qualitative or topological change in the be-
havior of the planar system (2.4), his is called a Bifurcations. This can be a local
bifurcation occurs when the change in the parameter causes a change in the stabil-
ity of an equilibrium point. Global bifurcations normally occur in larger invariant
sets of the system.

Codimension - One Bifurcations These Bifurcations require the variation
of a single parameter to occur in the system, all have a normal form, that is, a
topologically equivalent system, either local or global to the initial system.
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Transcritical Bifurcations: A transcritical Bifurcations in critical point ex-
ists for every value of the parameter λ but they exchange their stability with another
critical point after the “collision”between them.

Saddle-focus-saddle Bifurcations:

Definition 2.3. We Will call a Bifurcations saddle-focus-saddle is when a
parameter change it implies that two critical points, one saddle, collapse in a focus
and later they recover its original stability.

For a more detailed study, see [8, pág 51] and [14, pág 314]

2.2. Infinite Singular Points. Consider R3 the sphere
S2 =

{
(x1, x2, x3) ∈ R3;x21 + x22 + x23 = 1

}
and the plane π =

{
(x1, x2, x3) ∈ R3;x3 = 1

}
,

is tangent to S2 in the point (0, 0, 1). Let r a line through the origin (0, 0, 0) and a
point P of π, then r intercept S2 in two points P+ y P−, where the first is in the
upper open hemisphere H+ =

{
(x1, x2, x3) ∈ S2;x3 > 0

}
and the second is in the

lower open hemisphere H− =
{

(x1, x2, x3) ∈ S2;x3 < 0
}

.

The expression for p(X) in local chart (U1, φ1) is given by:

(2.5)

{
u̇ = vd

[
−uP ( 1

v ,
u
v ) +Q( 1

v ,
u
v )
]
,

v̇ = −vd+1P ( 1
v ,

u
v ).

The expression for (U2, φ2) is:

(2.6)

{
u̇ = vd

[
P (u

v ,
1
v )− uQ(u

v ,
1
v )
]
,

v̇ = −vd+1Q(u
v ,

1
v ).

and for (U3, φ3) is:

(2.7)

{
u̇ = P (u, v),
v̇ = Q(u, v).

Where d is the maximum degree of the polynomial. For a more detailed study, see
[11, pág 151]

2.3. Algebraic Methods. Concerning algebraic aspects considered in this
paper, we follow the references [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30] and also [1, 2, 3, 4, 5, 6].

A differential field K is a field equiped with a derivation ∂ such that ∀a, b ∈ K
it satisfied:

(1) ∂(a+ b) = ∂a+ ∂b
(2) ∂(a · b) = a · ∂b+ ∂a · b
(3) ∂

(
a
b

)
= 1

b2 (a · ∂b− ∂a · b)
The field of constants of K, denoted by CK , is given by

CK = {c ∈ K : ∂(c) = 0}

The Picard-Vessiot extension L/K is the extension of K preserving the field of
constants, that is CL = CK . Thus, given a system of first order linear differential
equations Ẋ = AX, where aij ∈ K, the differential Galois group of Ẋ = AX,
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denoted by DGal(L/K), is the group of K-differential automorphisms from L to
L, i.e., σ : L 7→ L, ∂(σ(a)) = σ(∂a),

DGal(L/K) = {σ : σ(a) = a, ∀a ∈ K}

A Hamiltonian system of n degrees of freedom

q̇i =
∂H

∂pi
, ṗi = −∂H

∂q1
, 1 ≤ i ≤ n,

where q = (q1, . . . , qn), p = (p1, . . . , pn) and

H =
p · p
2m

+ V (q), (q,p) ∈ R2n,

is integrable in the Liouville sense whether there exist n independent first integrals
that commute in pairwise with the Poisson bracket. In particular, the Hamiltonian
systems with one degree of freedom are integrable in the Liouville sense because H
is the first integral, i.e., Ḣ = 0. Morales-Ramis theory is the theory that relates
differential Galois theory with the integrability of dynamical systems. In particular,
Morales-Ramis Theorem for Hamiltonian systems says that if a Hamiltonian sys-
tem is integrable, then the connected identity component of the differential Galois
group of the first variational equation is an abelian group.

On the other hand, explicit solutions for differential equation

(2.8)
d2x

dt2
= f(x)

are related with the integral curve (x, ẋ) of the one degree of freedom Hamiltonian
system

(2.9) ẋ = y, ẏ = f(x), H =
y2

2
−
∫ x

x0

f(τ)dτ

We are interested in the families in where f(x) is a polynomial of degree two, that
is, family I, Family IV when p = −4 and Family V when s = −4. We recall that
our problem comes from a polynomial vector field provided in [2, 3], for this reason
p, s ∈ Z0 to get polynomial vector fields, while p = −4 and s = −4 correspond orig-
inally to a rational non-polynomial vector field, which is exceptionally considered
for the algebraic aspects.

Following [31], the Weierstrass P -function is an elliptic function that satisfy
the elliptic curve

(2.10) y2 = 4x3 − g2x− g3, x = ℘(t; g2, g3), y = ẋ.

where

(2.11) ℘(t; g2, g3) =
1

z2
+
∑
ω

(
1

(t− ω)2
− 1

ω2

)
.

Morever, the Weierstrass P -function is a double periodic function with periods 2ω1

and 2ω2; and invariants g2 and g3 given by

g2 =
∑
ω

60

ω4
, g3 =

∑
ω

140

ω6
.

The sums range over ω = 2n1ω1 + 2n2ω2 such that (n1, n2) ∈ Z× Z \ {(0, 0)}.
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3. Conditions For The Problem.

The following section allows us to identify the quadratic cases associated to
(1.1).

3.1. Reduction to 5 Families. The next proposition is a particular case of
proposition 4.1 in [3], we inly consider the quadratic cases.

Proposition 3.1. Let a, b, c,m, k ∈ R y s, p, r ∈ Z+. Quadratic systems asso-
ciated with each subfamily of (1.1) are equivalently to the following families:

(3.1) I:

{
ẋ = y
ẏ = −cx2

(3.2) II:

{
ẋ = y
ẏ = 2byx

(3.3) III:

{
ẋ = y
ẏ = 2ayx

(3.4) IV:

{
ẋ = y

ẏ = a
(
p+4
2

)
y − 3

2a
2x− cx2

(3.5) V:

{
ẋ = y
ẏ = b

(
s+4
2

)
y − 3

2bx− cx
2

Proof. We analyze each subfamily of the system (1.1), where We observe the
different possibilities for the constants a, b and c, are equal to 0. Some of cases are:

I. For a = 0 , b = 0 and c 6= 0. We observed two cases:
Case 1. If s = 0, then p = 1. Case 2. If s = 1, then p = 0.

II. For a 6= 0 , b 6= 0 and c 6= 0.

We observed that deg(Q) = max {2p+ 1, 2s+ 1, s+ p+ 1}.
Case 1. If deg(Q) = 2p+ 1, then 2p+ 1 = 2 so p = 1

2 /∈ Z+.

Case 2. If deg(Q) = 2s+ 1, then 2s+ 1 = 2 so s = 1
2 /∈ Z+.

Case 3. If deg(Q) = s+ p+ 1, then we return to reasoning in the family
I, so s = 0 then p = 1, but we have that 2p + 1 = 3 and this case would
be cubic. Same for p = 0 and s = 1.Therefore, this family does not have
quadratic cases.

�

4. Finite Plane

4.1. Singularity of the Family I.

Proposition 4.1. (0, 0) is a cusp of family (3.1) .

Proof. The critical point associated with the system (3.1) is (0, 0). Jacobian
matrix is:

M(x, y) =

[
0 1
−2cx 0

]
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Then,

M(0, 0) =

[
0 1
0 0

]
We see that λ2 = 0. Then, according to the Theorem (2.2), where A(x, y) = 0 and
y = 0, on the other hand We have to B(x, y) = −cx2,we get that F (x) = −cx2 and
G(x) = 0. Therefore the origin of the system (3.1) is a cusp.

�

4.2. Singularity of the Family II.

Proposition 4.2. The system (3.2) have infinite critical points.

Proof. (x, 0) which is a line of critical points associated with the system (3.2).
We see the solution of the system by separation of variables.

y = bx2 + k, where k is a constant.

�

4.3. Singularity of the Family III.

Proposition 4.3. The system (3.3) have infinite critical points.

Proof. (x, 0) which is a line of critical points associated with the system (3.3).
We see the solution of the system by separation of variables.

y = ax2 + k, where k is a constant.

�

4.4. Singularity of the Family IV.

Proposition 4.4. a) The point (0, 0) is an stable node if a < 0 and

unstable if a > 0, and (−3a
2

2c , 0) is a saddle.
b) If p = 0, (0, 0) is an stable focus if a < 0 and unstable if a > 0, and

(−3a
2

2c , 0) is a saddle.

Proof. Critical points associated with the system (3.4) are: (0, 0) and (−3a
2

2c , 0).
Let d = a(p+ 4) and Jacobian matrix are:

M(x, y) =

[
0 1

−3

2
a2 − 2cx

d

2

]
Then,

M(0, 0) =

[
0 1

−3

2
a2

d

2

]
and,

M(−3a
2

2c , 0) =

 0 1
3a2

2

d

2


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a. For M(0, 0), eigenvalues are:

λ1 =
1

4

[
d+
√
d2 − 24a2

]
and λ2 =

1

4

[
d−
√
d2 − 24a2

]
. According to the

Theorem (2.1) we see that λ1λ2 > 0 therefore (0, 0) is an stable node if
a < 0 and unstable if a > 0.

Now, for M(−3a
2

2c , 0), eigenvalues are:

λ1 =
1

4

[
+
√
d2 + 24a2

]
y λ1 =

1

4

[
d−
√
d2 + 24a2

]
. According to the

Theorem (2.1) we see that λ1λ2 < 0, then (−3a
2

2c , 0) is a saddle.
b. If p = 0, for M(0, 0) eigenvalues are:

λ1 =
a

2
(2 + i

√
2) and λ2 =

a

2
(2 − i

√
2). According to the Theorem (2.1)

we see that (0, 0) is an stable focus if a < 0 and unstable if a > 0.

Now, for M(−3a
2

2c , 0), eigenvalues are:

λ1 =
a

4

[
4 + 2

√
10
]

and λ1 =
a

4

[
4− 2

√
10
]
. According to the Theorem

(2.1) we see that λ1λ2 < 0, then (−3a
2

2c , 0) is a saddle.

�

4.5. Singularity of the Family V. Before looking at the following proposi-
tion, We define the following regions:

R1 =
{

(b, c, d) ∈ R3|d2 − 24b > 0
}

R2 =
{

(b, c, d) ∈ R3|d2 − 24b = 0
}

R3 =
{

(b, c, d) ∈ R3|d2 − 24b < 0, c > 0
}

R4 =
{

(b, 0, d) ∈ R3|d2 − 24b > 0
}

R5 =
{

(b, 0, d) ∈ R3|d2 − 24b = 0
}

R6 =
{

(b, 0, d) ∈ R3|d2 − 24b < 0
}

R7 =
{

(0, c, 0) ∈ R3|c > 0
}

R8 =
{

(b, c, d) ∈ R3|c < 0
}

We note that R3 =
⋃8

i=1Ri. Now in R3 and R4 we consider the following
subsets:

E1 =
{

(b, c, d) ∈ R3|d2 − 24b < 0, d > 0, c > 0
}

E2 =
{

(b, c, d) ∈ R3|d2 − 24b < 0, d < 0, c > 0
}

E3 =
{

(b, c, d) ∈ R3|d2 + 24b < 0, d > 0, c > 0
}

E4 =
{

(b, c, d) ∈ R3|d2 − 24b < 0, d < 0, c > 0
}

E5 =
{

(b, c, d) ∈ R3|d2 − 24b < 0, d > 0, c < 0
}

E6 =
{

(b, c, d) ∈ R3|d2 − 24b < 0, d < 0, c < 0
}

E7 =
{

(b, c, d) ∈ R3|d2 + 24b < 0, d > 0, c < 0
}

E8 =
{

(b, c, d) ∈ R3|d2 − 24b < 0, d < 0, c < 0
}

E9 =
{

(b, c, d) ∈ R3|d2 − 24b > 0, d > 0, c > 0
}

E10 =
{

(b, c, d) ∈ R3|d2 − 24b > 0, d < 0, c > 0
}

E11 =
{

(b, c, d) ∈ R3|d2 − 24b > 0, d < 0, c < 0
}

E12 =
{

(b, c, d) ∈ R3|d2 − 24b > 0, d > 0c < 0
}
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Proposition 4.5. Let the family (3.5) with (b, c, d) ∈ R3, then:

a) If (b, c, d) ∈ R1 and b > 0 then the point (0, 0) is unstable node and the
point (−3b2c , 0) is a saddle. if b < 0 then the point (0, 0) is a saddle and the

point (−3b2c , 0) is stable node.

b) If (b, c, d) ∈ R2 and b > 0, then the critical point (0, 0) is a unstable node
and the critical point (−3b2c , 0) is saddle.

c) If (b, c, d) ∈ R3 and b > 0 then the point (0, 0) is stable focus and the
point (−3b2c , 0) is a saddle. If b < 0 then point (0, 0) is a unstable focus

and the point (−3b2c , 0) is a unstable node.

Proof. Let d = b(s + 4), so critical points associated with the system (3.5)
are: (0, 0) and (−3b2c , 0).
then, Jacobian matrix are:

M(x, y) =

[
0 1

−3

2
b− 2cx

d

2

]
Then,

M(0, 0) =

[
0 1

−3b

2

d

2

]
For M(0, 0), eigenvalues are:

λ1 =
1

4

[
d+
√
d2 − 24b

]
and λ2 =

1

4

[
d−
√
d2 − 24b

]
.

Now, for (−3b2c , 0), we have that

M(−3b2c , 0) =

[
0 1
3b

2

d

2

]
With eigenvalues:

λ1 =
1

4

[
d+
√
d2 + 24b

]
and λ2 =

1

4

[
d−
√
d2 + 24b

]
.

a. If (b, c, d) ∈ R1 that is d2 − 24b > 0, for M(0, 0) We see that λ1λ2 = −3b
2

and λ1 > 0, then according to the Theorem (2.1) the critical point (0, 0)
is unstable node if b > 0 and a saddle if b < 0.

Now, for M(−3b2c , 0), we have that d2 + 24b > 48b, then:

(1) If b > 0, According to the Theorem (2.1) We see that λ1λ2 = −3b
2 ,

and b > 0 then (−3b2c , 0) is a saddle. If b < 0, λ2 < 0, then stable node.

(2) If b < 0 and d2 + 24b ∈ [48b, 0), then the critical point (−3b2c , 0) is
stable focus.
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(3) If b < 0 and d2+24b ≥ 0, then the critical point (−3b2c , 0) if stable node.

b. If (b, c, d) ∈ R2 that is d2 − 24b = 0 this leans to b ≥ 0 for M(0, 0)
λ1 = λ2 = d

4 , if b > 0 then the critical point is unstable node. We note

that if b = 0, then this corresponding to (3.1). Now, for M(−3b2c , 0), if

b > 0 that is d2 − 24b > 0, Furthermore λ1λ2 = −3b
2 according to the

Theorem (2.1) the critical point (−3b2c , 0) is saddle.

c. If (b, c, d) ∈ R3, that is d2 − 24b < 0 then b > 0. For M(0, 0) eigenvalues

are: λ1 =
1

4
(d+ i

√
24b− d2) and λ2 =

1

4
(d− i

√
24b− d2), then according

to the Theorem (2.1), (0, 0) is a focus unstable. Now, for b > 0 We see
that d2 + 24b > 0, that is for M(−3b2c , 0), we have that λ1,2 ∈ R. So,

λ1λ2 = −3b
2 , so According to the Theorem (2.1) we have that the critical

point (−3b2c , 0) is a saddle.

�

Proposition 4.6. Given the family (3.5) with c = 0, then:

a) If (b, 0, d) ∈ R4 and b > 0, then the critical point (0, 0) is a saddle. If
b < 0, then the critical point (0, 0) is a stable node.

b) If (b, 0, d) ∈ R5 and b > 0, then the critical point (0, 0) is a unstable node.

c) If (b, 0, d) ∈ R6 and b > 0, then the critical point (0, 0) is a unstable focus.
If b < 0, then the critical point (0, 0) is a stable focus.

Proof. With c = 0, the family (3.5) have the form:

(4.1)

{
ẋ = y
ẏ = d

2y −
3
2bx

Here, we see that the only critical point associated with the family (4.1) is (0, 0)
then, Jacobian matrix evaluated in the point is:

M(0, 0) =

[
0 1

−3b

2

d

2

]

For M(0, 0), eigenvalues are:

λ1 =
1

4

[
d+
√
d2 − 24b

]
and λ2 =

1

4

[
d−
√
d2 − 24b

]
.

a. If (b, 0, d) ∈ R4 that is d2 − 24b > 0, we have that λ1λ2 = −3b
2 , then if

b > 0 according to the Theorem (2.1) the critical point (0, 0) is a saddle
and if b < 0 and λ1 < 0 then the critical point (0, 0) is a stable node.

b. If (b, 0, d) ∈ R5 that is d2 − 24b = 0, we have that λ1λ2 = d
4 , then accord-

ing to the Theorem (2.1) the critical point (0, 0) is a unstable node.
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c. If (b, 0, d) ∈ R6 that is d2− 24b < 0, we have that λ1 =
1

4
(d+ i

√
24b− d2)

and λ2 =
1

4
(d− i

√
24b− d2), then if b > 0 according to the Theorem (2.1)

the critical point (0, 0) is a unstable focus and if b < 0 and λ1 < 0 then
the critical point (0, 0) is a stable focus.

�

Now, We will look for the stable manifold associated systems.

Proposition 4.7. The stable manifold associated with the system (3.4) at the

point (−3a
2

2c , 0) is:

S : y =
c(x+ 3a2

2c )2

(v−w)(v−2w)

Proof. Let is observe the stability of the system (3.4) in the point (−3a
2

2c , 0):
Let is look at the eigenvalues in the Jacobian matrix of the system (3.4) in the

point (−3a
2

2c,0 ).

A =

 0 1
3a2

2

d

2


So, w = λ1 =

1

4
[d+

√
d2 + 24a2] and v = λ2 =

1

4
[d−

√
d2 + 24a2].

Then, B(x) = C−1AC =

[
w 0
0 v

]

F (x) =

[
0
−cx2

]
, G(x) =

cx2

v − w

[
1
−1

]

U(t) =

[
ewt 0

0 0

]
, V (t) =

[
0 0

0 evt

]
, b =

[
b1

0

]
Then,

u(0)(t, b) = 0.

u(1)(t, b) =

[
ewtb1

0

]
u(2)(t, b) =

[
ewtb1

0

]
+
∫ t

0

[
ew(t−s) 0
0 0.

] [ b21c
v−we

2ws

− b21c
v−we

2ws

]
ds−

∫∞
t

[
0 0
0 ev(t−s)

][ b21c
v−we

2ws

− b21c
v−we

2ws

]
ds =

u(2)(t, b) =

 ewtb1 +
b21ce

2wt[ewt−1]
w(v−w)

b21ce
2wt

(v−w)(v−2w)


Therefore, We can approximate by ψ2(b1) = b1, therefore the stable manifold can
be approximated by
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S : y =
c(x+ 3a2

2c )2

(v−w)(v−2w)

like x→ 0. Similarly the unstable

U : x+ 3a2

2c = 2cy2

(v−w)((v−2w)

�

Proposition 4.8. For the system (3.5) We have that:

a) If (b, c, d) ∈ R1 and b < 0, stable manifold at the point (0, 0) is:

S : y = cx2

(v−w)(v−2w)

b) If (b, c, d) ∈ {(x, y, z)/x > 0, y 6= 0}, then stable manifold at the point
(−3b2c , 0) es:

S : y =
c(x+ 3b

2c )
2

(v−w)(v−2w)

Proof. a) Let is observe the stability of the system (3.5) for b < 0 at the
point (0, 0):
Let is observe the stability of the system (3.5) in the point (0, 0).

A =

[
0 1
−3b

2

d

2

]

Let, w = λ1 =
1

4
[d+

√
d2 − 24b] and v = λ2 =

1

4
[d−

√
d2 − 24b].

Then, B(x) = C−1AC =

[
w 0
0 v

]

F (x) =

[
0
−cx2

]
, G(x) =

cx2

v − w

[
1
−1

]

U(t) =

[
ewt 0

0 0

]
, V (t) =

[
0 0

0 evt

]
, a =

[
a1

0

]
Then,

u(0)(t, a) = 0.

u(1)(t, a) =

[
ewta1

0

]
u(2)(t, a) =

[
ewta1

0

]
+
∫ t

0

[
ew(t−s) 0
0 0.

][ a2
1c

v−we
2ws

− a2
1c

v−we
2ws

]
ds−

∫∞
t

[
0 0
0 ev(t−s)

][ a2
1c

v−we
2ws

− a2
1c

v−we
2ws

]
ds =

u(2)(t, a) =

 ewta1 +
a2
1ce

2wt[ewt−1]
w(v−w)

a2
1ce

2wt

(v−w)(v−2w)


Therefore, We can approximate by ψ2(a1) = a1, therefore the stable manifold
can be approximated by
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S : y = cx2

(v−w)(v−2w)

Like x→ 0. Similarly the unstable

U : x = 2cy2

(v−w)((v−2w)

b) Let is observe the stability of the system (3.5) at the point (−3b2c , 0), when b > 0:

A =

[
0 1
3b

2

d

2

]

Let, w = λ1 =
1

4
[d+

√
d2 + 24b] and v = λ2 =

1

4
[d−

√
d2 + 24b].

So, B(x) = C−1AC =

[
w 0
0 v

]

F (x) =

[
0
−cx2

]
, G(x) =

cx2

v − w

[
1
−1

]

U(t) =

[
ewt 0

0 0

]
, V (t) =

[
0 0

0 evt

]
, a =

[
a1

0

]
Then,

u(0)(t, a) = 0.

u(1)(t, a) =

[
ewta1

0

]
u(2)(t, a) =

[
ewta1

0

]
+
∫ t

0

[
ew(t−s) 0
0 0.

][ a2
1c

v−we
2ws

− a2
1c

v−we
2ws

]
ds−

∫∞
t

[
0 0
0 ev(t−s)

][ a2
1c

v−we
2ws

− a2
1c

v−we
2ws

]
ds =

u(2)(t, a) =

 ewta1 +
a2
1ce

2wt[ewt−1]
w(v−w)

a2
1ce

2wt

(v−w)(v−2w)


Therefore, We can approximate by ψ2(a1) = a1, therefore the stable manifold
can be approximated by

S : y =
c(x+ 3b

2c )
2

(v−w)(v−2w)

Like x→ 0. Similarly the unstable

U : x+ 3b
2c = 2cy2

(v−w)((v−2w)

�

5. Bifurcations

In this section we will analyze the study of the bifurcations of family (3.5)
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5.1. Family V.

Proposition 5.1. Let sets R7 and R8 are transcritical bifurcations for the
system (3.5)

Proof. Let P1 : (0, 0) and P2 : ( 3b
2c , 0) of proposition (4.5). If (b, c, d) ∈ E3

then P1 a saddle and P2 is a unstable focus, when (b, c, d) ∈ R7, P1 and P2, they
collapse on one critical point which point is a cusp. So, when (b, c, d) ∈ E2 then P1

a unstable focus and P2 is a saddle. Similarly, the same behavior is observed when
(b, c, d) ∈ E2, then (b, c, d) ∈ R7 and finally (b, c, d) ∈ E4.

Now, Let P1 : (0, 0) and P2 : ( 3b
2c , 0) of proposition (4.5). If (b, c, d) ∈ E4

then P1 a saddle and P2 is a stable focus, when (b, c, d) ∈ R8, P1 and P2, they
collapse on one critical point which point is a cusp. So, when (b, c, d) ∈ E1 then P1

a stable focus and P2 is a saddle. Similarly, the same behavior is observed when
(b, c, d) ∈ E1, then (b, c, d) ∈ R8 and finally (b, c, d) ∈ E3.
Therefore, sets R7 and R8 are transcritical bifurcations for the system (3.5) �

Proposition 5.2. A set {(b, 0, d)|d2 − 24b < 0} is a bifurcations saddle-focus-
saddle for the system (3.5).

Proof. For proposition (4.5), if (b, c, d) ∈ E1, the point P1 is a stable focus and
P2 is a saddle. Now, when (b, c, d) ∈

{
(b, 0, d)|d2 − 24b < 0, d > 0

}
for proposition

(4.5), P1 and P2 they collapse in an unstable focus when (b, c, d) goes the set E5,
appear again P1 and P2 like stable focus and a saddle respectively. �

Proposition 5.3. A set {(b, 0, d)|d2 − 24b < 0} is a bifurcations saddle-focus-
saddle for the system (3.5).

Proof. For proposition (4.5), if (b, c, d) ∈ E2, the point P1 is a unstable
focus and P2 is a saddle. Now, when (b, c, d) ∈

{
(b, 0, d)|d2 − 24b < 0, d < 0

}
for

proposition (4.5), P1 and P2 they collapse in an stable focus when (b, c, d) goes the
set E6, appear again P1 and P2 like unstable focus and a saddle respectively.

�

Proposition 5.4. Let sets E9 and E10 are local bifurcations for the system
(3.5)

Proof. Let P1 : (0, 0) of proposition (4.5). If (b, c, d) ∈ E9 then P1 is a stable
node. Now, when (b, c, d) ∈ E10 the point P1 is a unstable node. Therefore, regions
E9 and E10 are local bifurcations for the system (3.5) �

Proposition 5.5. Let sets E11 and E12 are local bifurcations for the system
(3.5)

Proof. Let P2 : ( 3b
2c , 0) of proposition (4.5). If (b, c, d) ∈ E12 then P2 is a

unstable node. Now, when (b, c, d) ∈ E11 the point P2 is a stable node. Therefore,
regions E11 and E12 are local bifurcations for the system (3.5) �



TRANSCRITICAL BIFURCATIONS AND ALGEBRAIC ASPECTS OF QUADRATIC MULTIPARAMETRIC FAM.15

Figure 1. (3.5), c > 0.

Figure 2. (3.5), c = 0.

Figure 3. (3.5), c < 0.

6. Infinite Plane

6.1. Family I. In the Chart U1 the associated system 3.1 :

(6.1)

{
u̇ = −u2v − c
v̇ = −uv2

The system have not critical points at infinite plane.

In the Chart U2 the associated system 3.1:

(6.2)

{
u̇ = v + cu3

v̇ = −cu2v
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Figure 4. (3.5), c > 0.

Figure 5. (3.5), c < 0.

Figure 6. (3.5), c < 0.

Proposition 6.1. The point (0, 0) is an stable node if c < 0 and unstable if
c > 0.

Proof. The critical points associated with the system (6.2) is P : (0, 0).
Jacobian matrix is:

M(u, v) =

[
3cu2 1
−2cuv −cu2

]
Then,

M(0, 0) =

[
0 1
0 0

]
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We see that λ2 = 0. According to the Theorem (2.2), let v + A(u, v) = 0 a
solution of v + A(u, v) = 0, where A(u, v) = cu3 then v = −cu3, also we have that
B(u, v) = cu2v, so F (u) = −c2u5 and G(x) = 4cu2 then m = 5, n = 2, a = −c2,
b = 4c and m = 2n+1, furthermore b2 +4a(n+1) ≥ 0 . Therefore the origin of the
system (6.2) in infinite plane is an stable node if c < 0 and unstable if c > 0. �

For a more detailed study of the system see figure on the Poincaré sphere (1).

6.2. Family II. In the Chart U1 the associated system (3.2):

(6.3)

{
u̇ = −u2v + 2b
v̇ = −uv2

The system have not critical points at infinite plane.

In the Chart U2 the associated system (3.2).

(6.4)

{
u̇ = v − 2bu2

v̇ = −2buv

Proposition 6.2. The point (0, 0) have one hyperbolic and one elliptic sector.

Proof. The critical points associated with the system (6.4) is P : (0, 0).
Jacobian matrix is:

M(u, v) =

[
−4bu 1
−2bv −2bu

]
Then,

M(0, 0) =

[
0 1
0 0

]
We see that, λ2 = 0. According to the Theorem (2.2), let v+A(u, v) = 0 a solution
of v + A(u, v) = 0, where A(u, v) = −2bu2 then v = −2bu2, also we have that
B(u, v) = −2buv, so F (u) = −4b2u3 and G(x) = −6bu then m = 2n + 1 and
b2 + 4a(n + 1). Therefore the origin of the system (6.4) in infinite plane have one
hyperbolic and one elliptic sector. �

For a more detailed study of the system see figure on the Poincaré sphere (2).

6.3. Family III. In the Chart U1 the associated system (3.3):

(6.5)

{
u̇ = −u2v + 2a
v̇ = −uv2

The system have not critical points at infinite plane.

In the Chart U2 the associated system (3.3).

(6.6)

{
u̇ = v − 2au2

v̇ = −2auv

Proposition 6.3. The point (0, 0) have one hyperbolic and one elliptic sector.

Proof. The critical points associated with the system (6.6) is P : (0, 0).
Jacobian matrix is:

M(u, v) =

[
−4au 1
−2av −2au

]
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Then,

M(0, 0) =

[
0 1
0 0

]
We see that, λ2 = 0. According to the Theorem (2.2), let v + A(u, v) = 0 a
solution of v + A(u, v) = 0, where A(u, v) = −2au2 then v = −2au2, also we have
that B(u, v) = −2auv, so F (u) = −4a2u3 y G(x) = −6au then m = 2n + 1 and
b2 + 4a(n + 1). Therefore the origin of the system (6.6) in infinite plane have one
hyperbolic and one elliptic sector. �

For a more detailed study of the system see figure on the Poincaré sphere (3).

6.4. Family IV. Let d = a (p+ 4).

In the Chart U1 the associated system (3.4).

(6.7)

{
u̇ = −u2v + duv

2 −
3a2v
2 − c

v̇ = −uv2

The system have not critical points at infinite plane.

In the Chart U2 the associated system (3.4).

(6.8)

{
u̇ = v − duv

2 + 3
2a

2u2v + cu3

v̇ = −dv2

2 + 3
2a

2uv2 + cu2v

Proposition 6.4. The point (0, 0) is an stable node if c < 0 and unstable if
c > 0.

Proof. The critical points associated with the system (6.8) is P : (0, 0).

Jacobian matrix:

M(u, v) =

[
−dv

2 + 3a2v + 3cu2 1− du
2 + 3

2a
2u2

3
2a

2v2 −dv + 3a2uv + cu2

]
Then,

M(0, 0) =

[
0 1
0 0

]
We see that, λ2 = 0. According to the Theorem (2.2), Let v = f(u) a solution of
v+A(u, v) = 0 where v = f(u) = −cu3 + . . . an approximation of the Taylor series

solution, furthermore B(u, v) = −dv2

2 + 3
2a

2uv2 + cu2v, then F (u) = −c2u5 + . . .

and G(u) = cu2 + . . ., so m = 5,n = 2,b = 4c and a = −c2. Therefore the origin in
the infinite plane is an stable node if c < 0 and unstable if c > 0.. �

For a more detailed study of the system see figure on the Poincaré sphere (4).
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6.5. Family V. Let d = a (s+ 4).

In the Chart U1 the associated system (3.5).

(6.9)

{
u̇ = −u2v + duv

2 −
3bv
2 − c

v̇ = −uv2

The system have not critical points at infinite plane.

In the Chart U2 the associated system (3.5

(6.10)

{
u̇ = v − duv

2 + 3
2bu

2v + cu3

v̇ = −dv2

2 + 3
2buv

2 + cu2v

Proposition 6.5. The point (0, 0) is stable node if c < 0 and unstable if c > 0.

Proof. The critical points associated with the system (6.10) is P : (0, 0).

Jacobian matrix:

M(u, v) =

[
−dv

2 + 3buv + 3cu2 1− du
2 + 3

2bu
2

3
2bv

2 + 2cuv −2dv + 3buv + cu2

]
Then,

M(0, 0) =

[
0 1
0 0

]
We see that, λ2 = 0. According to the Theorem (2.2), let v = f(u) a solution of
v + A(u, v) = 0, where v = f(u) = −cu3 + . . . approximation of the Taylor series

solution, furthermore B(u, v) = −dv2

2 + 3
2buv

2 + cu2v, then F (u) = −c2u5 + . . . y

G(u) = cu2 + . . ., so m = 5,n = 2,b = 4c y a = −c2. Therefore the origin in the
infinite plane is an stable node if c < 0 and is a unstable node if c > 0. �

For a more detailed study of the system which can see figure on the Poincarè
sphere (5) and (6) .

7. Global Phase Portrait

In this section We show the global phase portrait associate to each family:
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Figure 7. Family I

Figure 8. Family II

Figure 9. Family III

8. Algebraic Aspects

In this section we analyze the families I, II, III, IV and V through an algebraic
point of view. We compute the solutions in terms of P-Weierstrass function of
families I, II (p = −4) and V (s = −4), as well the differential Galois group of their
variational equations.
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Figure 10. Family IV

Figure 11. Family V when b < 0.

Figure 12. Family V when b > 0.

8.1. Family I.

Theorem 8.1. Consider the family I, The following statements hold.
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(1) The dynamical system is hamiltonian with one degree of freedom and with
polynomial first integral

H = H(x, y) =
y2

2
+
c

3
x3

(2) The integral curve of the Hamiltomian vector field is

(−6

c
℘(t+ k0; 0,−2H),−6

c
℘̇(t+ k0; 0,−2H)).

(3) The Differential Galois Group associated to the foliation is isomorphic to
Z2.

(4) The connected identity component of the Differential Galois Group of the
first variational equation along any particular solution is an abelian group.

Proof. We proceed according to each item,

(1) The polynomial vector field related with family I is equivalent to Equa-
tion (2.8) being f(x) = −cx2. In virtue of Equation (2.9) we have the

Hamiltonian H = y2

2 + c
3x

3.

(2) Due to y = ẋ, we obtain y2 = − 2c
3

2
+H. Through the change of variable

(x, y) 7→ ( 3

√
−6
c x,

3

√
−6
c y), we arrive to the elliptic curve given in Equation

(2.10) with invariants g2 = 0 and g3 = −2H. Thus, the integral curve of
the Hamiltonian system is (x, ẋ), being x given by − 6

c℘(t+ k0; 0,−2H).
(3) The foliation associated to the vector field of Family I is

y′ = −cx
2

y
, ′ :=

d

dx
.

Setting z = y2

2 , we obtain z′ = −cx2 and therefore z = − c
3x

3. Due to the
differential field K is the field of rational functions C(x), σ(z) = z and
σ(y) = λ

√
z, where λ2 = 1. Thus, the Picard-Vessiot extension L is a

quadratic extension of K and we can conclude that DGal(L/K) has two
elements.

(4) Let (x0(t), ẋ0(t)) be a particular solution of the polynomial vector field
related with Family I. Thus, the first variational equation is

d

dt

(
ξ1
ξ2

)
=

(
0 1

−2cx0(t) 0

)(
ξ1
ξ2

)
,

which is equivalent to ξ̈ = −2cx0(t)ξ, being ξ = ξ1. By Morales-Ramis
theory, due to the dynamical system is polynomially integrable, the dif-
ferential Galois group of this first variational equation is abelian.

�

8.2. Family II.

Theorem 8.2. Consider the family II, The following statements hold.

(1) The first integral of the polynomial vector field is

I = I(x, y) = y − bx2

(2) The integral curve of the polynomial vector field is (x(t), ẋ(t)), where

x(t) =

√
k1
b

tan(
√
k1b(k2 + t)).
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(3) The Differential Galois Group associated to the foliation is isomorphic to
the identity group.

(4) The connected identity component of the Differential Galois Group of
the first variational equation around any particular solution is an abelian
group.

Proof. We proceed according to each item,

(1) The total derivative of I(x, y) vanishes, i.e., İ = 0, therefore I is a first
integral of the vector field related to family II.

(2) Due to y = ẋ, we obtain ẍ = bż, where z = x2. Thus, ẋ = bx2 +k1, which
implies that ∫

dx

bx2 + k1
= t+ k2

and then x(t) =
√

k1

b tan(
√
k1b(k2 + t))..

(3) The foliation associated to the vector field of Family II is

y′ = 2bx, ′ :=
d

dx
.

Then the solution of this foliation is

y(x) = bx2 + k1

. Then we can conclude thatDGal(L/K) has one element, i.e., DGal(L/K) =
I2.

(4) Let (x0(t), ẋ0(t)) be a particular solution of the polynomial vector field
related with Family II. Thus, the first variational equation is

d

dt

(
ξ1
ξ2

)
=

(
0 1

−2by0(t) 2bx0(t)

)(
ξ1
ξ2

)
,

which is equivalent to

ξ̈ − 2bx0(t)ξ̇ − 2by0(t)ξ = 0, ξ = ξ1.

Due to the first integral is of polynomial type, by Morales-Ramis theory
we can conclude that the connected identity component of the differential
Galois group of the first variational equation along any particular solution
is an abelian group.

�

8.3. Family III.

Theorem 8.3. Consider the family III, The following statements hold.

(1) The first integral of the polynomial vector field is

I = I(x, y) = y − ax2

(2) The integral curve of the polynomial vector field is (x(t), ẋ(t)), where

x(t) =

√
k1
a

tan(
√
k1a(k2 + t)).

(3) The Differential Galois Group associated to the foliation is isomorphic to
the identity group.
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(4) The connected identity component of the Differential Galois Group of
the first variational equation around any particular solution is an abelian
group.

Proof. We proceed according to each item,

(1) The total derivative of I(x, y) vanishes, i.e., İ = 0, therefore I is a first
integral of the vector field related to family III.

(2) Due to y = ẋ, we obtain ẍ = aż, where z = x2. Thus, ẋ = ax2 +k1, which
implies that ∫

dx

ax2 + k1
= t+ k2

and then x(t) =
√

k1

a tan(
√
ak1(k2 + t))..

(3) The foliation associated to the vector field of Family II is

y′ = 2ax, ′ :=
d

dx
.

Then the solution of this foliation is

y(x) = ax2 + k1

. Then we can conclude thatDGal(L/K) has one element, i.e., DGal(L/K) =
I2.

(4) Let (x0(t), ẋ0(t)) be a particular solution of the polynomial vector field
related with Family III. Thus, the first variational equation is

d

dt

(
ξ1
ξ2

)
=

(
0 1

−2ay0(t) 2ax0(t)

)(
ξ1
ξ2

)
,

which is equivalent to

ξ̈ − 2ax0(t)ξ̇ − 2ay0(t)ξ = 0, ξ = ξ1.

Due to the first integral is of polynomial type, by Morales-Ramis theory
we can conclude that the connected identity component of the differential
Galois group of the first variational equation along any particular solution
is an abelian group.

�

8.4. Family IV.

Theorem 8.4. Consider the family IV, being p = −4. The following statements
hold.

(1) The dynamical system is hamiltonian with one degree of freedom and with
polynomial first integral

H = H(x, y) =
y2

2
+
c

3
x3 +

3

4
a2x2

(2) The integral curve of the Hamiltomian vector field is given in terms of
P-function.

(3) The Differential Galois Group associated to the foliation is isomorphic to
Z2.

(4) The connected identity component of the Differential Galois Group of the
first variational equation along any particular solution is an abelian group.



TRANSCRITICAL BIFURCATIONS AND ALGEBRAIC ASPECTS OF QUADRATIC MULTIPARAMETRIC FAM.25

Proof. We proceed according to each item,

(1) The polynomial vector field related with family IV is equivalent to Equa-
tion (2.8) being f(x) = −cx2− 3

2a
2x. In virtue of Equation (2.9) we have

the Hamiltonian H = y2

2 + c
3x

3 + 3
4a

2x2.

(2) Due to y = ẋ, we obtain y2 = − 2c
3

2 − 3
2a

2x + 2H. Because previous ex-
pression is a cubic polynomial in x, we can do a suitable change of variable
to arrive to the elliptic curve given in Equation (2.10) with invariants g2
and g3. Thus, the integral curve of the Hamiltonian system is written in
terms of P-function.

(3) The foliation associated to the vector field of Family IV is

y′ = −
cx2 − 3

2a
2x

y
, ′ :=

d

dx
.

Setting z = y2

2 , we obtain z′ = −cx2 − 3
2a

2x and therefore z = − c
3x

3 −
3
4a

2x2. Due to the differential field K is the field of rational functions

C(x), σ(z) = z and σ(y) = λ
√
z, where λ2 = 1. Thus, the Picard-

Vessiot extension L is a quadratic extension of K and we can conclude
that DGal(L/K) has two elements.

(4) Let (x0(t), ẋ0(t)) be a particular solution of the polynomial vector field
related with Family IV. Thus, the first variational equation is

d

dt

(
ξ1
ξ2

)
=

(
0 1

− 3
2a

2 − 2cx0(t) 0

)(
ξ1
ξ2

)
,

which is equivalent to ξ̈ = (− 3
2a

2 − 2cx0(t))ξ, being ξ = ξ1. By Morales-
Ramis theory, due to the dynamical system is polynomially integrable,
the differential Galois group of this first variational equation is abelian.

�

8.5. Family V.

Theorem 8.5. Consider the family V, being s = −4. The following statements
hold.

(1) The dynamical system is hamiltonian with one degree of freedom and with
polynomial first integral

H = H(x, y) =
y2

2
+
c

3
x3 +

3

4
bx2

(2) The integral curve of the Hamiltomian vector field is given in terms of
P-function.

(3) The Differential Galois Group associated to the foliation is isomorphic to
Z2.

(4) The connected identity component of the Differential Galois Group of the
first variational equation along any particular solution is an abelian group.

Proof. We proceed according to each item,

(1) The polynomial vector field related with family V is equivalent to Equation
(2.8) being f(x) = −cx2 − 3

2bx. In virtue of Equation (2.9) we have the

Hamiltonian H = y2

2 + c
3x

3 + 3
4bx

2.
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(2) Due to y = ẋ, we obtain y2 = − 2c
3

2− 3
2bx+2H. Because previous expres-

sion is a cubic polynomial in x, we can do a suitable change of variable
to arrive to the elliptic curve given in Equation (2.10) with invariants g2
and g3. Thus, the integral curve of the Hamiltonian system is written in
terms of P-function.

(3) The foliation associated to the vector field of Family V is

y′ = −
cx2 − 3

2bx

y
, ′ :=

d

dx
.

Setting z = y2

2 , we obtain z′ = −cx2− 3
2bx and therefore z = − c

3x
3− 3

4bx
2.

Due to the differential field K is the field of rational functions C(x), σ(z) =
z and σ(y) = λ

√
z, where λ2 = 1. Thus, the Picard-Vessiot extension L

is a quadratic extension of K and we can conclude that DGal(L/K) has
two elements.

(4) Let (x0(t), ẋ0(t)) be a particular solution of the polynomial vector field
related with Family V. Thus, the first variational equation is

d

dt

(
ξ1
ξ2

)
=

(
0 1

− 3
2b− 2cx0(t) 0

)(
ξ1
ξ2

)
,

which is equivalent to ξ̈ = (− 3
2b − 2cx0(t))ξ, being ξ = ξ1. By Morales-

Ramis theory, due to the dynamical system is polynomially integrable,
the differential Galois group of this first variational equation is abelian.

�

9. Conclusion

An in-depth analysis of the quadratic systems containing certain multipara-
metric families was carried out, for this purpose they were identified and classified,
with the aim of making more bearable the study on the stability of its critical points
both in the finite and infinite plane. The existence of transcritical bifurcations in
the given system was determined. Finally, a study was made on the hamiltonian
cases and the differential Galois groups of their foliations and variational equations.
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Barcelona.
[16] Computational algebraic system, dynamic greometry software; Geogebra.
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I. The case ẍ = f(x, t), SIAM Journal on Applied Dynamical Systems, 8(1), (2009) 279–297.
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