Mostrar el registro sencillo del ítem
A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cycles
dc.contributor.author | Cardenas Gutierrez, Javier | |
dc.contributor.other | Valencia Ochoa, Guillermo | |
dc.contributor.other | Duarte-Forero, Jorge | |
dc.date.accessioned | 2022-11-15T21:35:27Z | |
dc.date.available | 2022-11-15T21:35:27Z | |
dc.date.issued | 2020-07-10 | |
dc.date.submitted | 2020-04-08 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12834/1029 | |
dc.description.abstract | This paper presents a comparative study on the energy, exergetic and thermo-economic performance of a novelty thermal power system integrated by a supercritical CO2 Brayton cycle, and a recuperative organic Rankine cycle (RORC) or a simple organic Rankine cycle (SORC). A thermodynamic model was developed applying the mass, energy and exergy balances to all the equipment, allowing to calculate the exergy destruction in the components. In addition, a sensitivity analysis allowed studying the effect of the primary turbine inlet temperature (TIT, PHIGH, rP and TC) on the net power generated, the thermal and exergy efficiency, and some thermo-economic indicators such as the payback period (PBP), the specific investment cost (SIC), and the levelized cost of energy (LCOE), when cyclohexane, acetone and toluene are used as working fluids in the bottoming organic Rankine cycle. The parametric study results show that cyclohexane is the organic fluid that presents the best thermo-economic performance, and the optimization with the PSO method conclude a 2308.91 USD/kWh in the SIC, 0.22 USD/ kWh in the LCOE, and 9.89 year in the PBP for the RORC system. Therefore, to obtain technical and economic viability, and increase the industrial applications of these thermal systems, thermo-economic optimizations must be proposed to obtain lower values of the evaluated performance indicators. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Elsevier Ltd | spa |
dc.title | A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cycles | spa |
dcterms.bibliographicCitation | [1] H. Jouhara, M.A. Sayegh, Energy efficient thermal systems and processes, Therm. Sci. Eng. Prog. 7 (125–130) (2018) 1–5. | spa |
dcterms.bibliographicCitation | [2] S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef, V. Lemort, Techno-economic survey of organic rankine cycle (ORC) systems, Renew. Sustain. Energy Rev. 22 (2013) 168–186. | spa |
dcterms.bibliographicCitation | [3] E.H. Wang, et al., Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine, Appl. Therm. Eng. 67 (1–2) (2014) 168–178. | spa |
dcterms.bibliographicCitation | [4] J. Bao, L. Zhao, A review of working fluid and expander selections for organic Rankine cycle, Renew. Sustain. Energy Rev. 24 (2013) 325–342. | spa |
dcterms.bibliographicCitation | [5] G. Valencia, A. Fontalvo, Y. C ardenas, J. Duarte, C. Isaza, Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC, Energies 12 (12) (2019). | spa |
dcterms.bibliographicCitation | [6] A. Landelle, N. Tauveron, P. Haberschill, R. Revellin, S. Colasson, Organic Rankine cycle design and performance comparison based on experimental database, Appl. Energy 204 (2017) 1172–1187. | spa |
dcterms.bibliographicCitation | [7] V. Dostal, M.J. Driscoll, P. Hejzlar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Massachusetts Institute of Technology, Department of Nuclear Engineering, 2004. | spa |
dcterms.bibliographicCitation | [8] S. Su arez de la Fuente, D. Roberge, A.R. Greig, “Safety and CO2 emissions: implications of using organic fluids in a ship’s waste heat recovery system, Mar. Pol. 75 (2017) 191–203. | spa |
dcterms.bibliographicCitation | [9] P. Garg, P. Kumar, K. Srinivasan, Supercritical carbon dioxide Brayton cycle for concentrated solar power, J. Supercrit. Fluids 76 (2013) 54–60. | spa |
dcterms.bibliographicCitation | [10] J. Sarkar, Second law analysis of supercritical CO2 recompression Brayton cycle, Energy 34 (9) (2009) 1172–1178. | spa |
dcterms.bibliographicCitation | [11] Z. Liu, Z. Liu, X. Yang, H. Zhai, X. Yang, Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system, Energy Convers. Manag. 205 (2020) 112391. | spa |
dcterms.bibliographicCitation | [12] V. Dostal, P. Hejzlar, M.J. Driscoll, The supercritical carbon dioxide power cycle: comparison to other advanced power cycles, Nuclear technology 154 (3) (2006) 283–301 | spa |
dcterms.bibliographicCitation | [13] B.D. Iverson, T.M. Conboy, J.J. Pasch, A.M. Kruizenga, Supercritical CO2 Brayton cycles for solar-thermal energy, Appl. Energy 111 (2013) 957–970. | spa |
dcterms.bibliographicCitation | [14] A. Toffolo, A. Lazzaretto, G. Manente, M. Paci, A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems, Appl. Energy 121 (2014) 219–232. | spa |
dcterms.bibliographicCitation | [15] G. Valencia, C. Pe~naloza, J. Forero, Thermoeconomic optimization with PSO algorithm of waste heat recovery systems based on organic rankine cycle system for a natural gas engine, Energies 12 (Oct. 2019) 4165. | spa |
dcterms.bibliographicCitation | [16] R.S. El-Emam, I. Dincer, Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle, Appl. Therm. Eng. 59 (1–2) (2013) 435–444. | spa |
dcterms.bibliographicCitation | [17] G. Valencia, C. Pe~naloza, J. Forero, Thermo-economic assessment of a gas microturbine-absorption chiller trigeneration system under different compressor inlet air temperatures, Energies 12 (Dec. 2019) 4643. | spa |
dcterms.bibliographicCitation | [18] G. Valencia, J. Duarte, C. Isaza-Roldan, Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC, Appl. Sci. 9 (19) (2019). | spa |
dcterms.bibliographicCitation | [19] G.V. Ochoa, J.C. Gutierrez, J.D. Forero, Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine, Resources 9 (1) (2020). | spa |
dcterms.bibliographicCitation | [20] G.V. Ochoa, J.P. Rojas, J.D. Forero, Advance exergo-economic analysis of a waste heat recovery system using ORC for a bottoming natural gas engine, Energies 13 (1) (2020) 267. | spa |
dcterms.bibliographicCitation | [21] G. Ochoa, C. Pe~naloza, J. Rojas, Thermoeconomic modelling and parametric study of a simple ORC for the recovery of waste heat in a 2 MW gas engine under different working fluids, Appl. Sci. 9 (Oct. 2019) 4526. | spa |
dcterms.bibliographicCitation | [22] M. Khaljani, R. Khoshbakhti Saray, K. Bahlouli, Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle, Energy Convers. Manag. 97 (2015) 154–165. | spa |
dcterms.bibliographicCitation | [23] G.G. Esquivel-Pati~no, M. Serna-Gonz alez, F. N apoles-Rivera, Thermal integration of natural gas combined cycle power plants with CO2 capture systems and organic Rankine cycles, Energy Convers. Manag. 151 (2017) 334–342. | spa |
dcterms.bibliographicCitation | [24] J. Song, X. Li, X. Ren, C. Gu, Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC), Energy 143 (2018) 406–416. | spa |
dcterms.bibliographicCitation | [25] S. Katuli c, M. Cehil, D.R. Schneider, “Thermodynamic efficiency improvement of combined cycle power plant’s bottom cycle based on organic working fluids, Energy 147 (2018) 36–50. | spa |
dcterms.bibliographicCitation | [26] S. Shaaban, Analysis of an integrated solar combined cycle with steam and organic Rankine cycles as bottoming cycles, Energy Convers. Manag. 126 (2016) 1003–1012. | spa |
dcterms.bibliographicCitation | [27] H. Singh, R.S. Mishra, Performance analysis of solar parabolic trough collectors driven combined supercritical CO2 and organic Rankine cycle, Eng. Sci. Technol. – Int. J. 21 (3) (2018) 451–464. | spa |
dcterms.bibliographicCitation | [28] G.V. Ochoa, C. Isaza-Roldan, J.D. Forero, A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2- megawatt four-stroke internal combustion engine, Heliyon 5 (10) (Oct. 2019), e02700. | spa |
dcterms.bibliographicCitation | [29] T. Paanu, P. Aho, J.K. Ekman, H. Saveljeff, S. Niemi, Effect of the Exhaust Gas Side Fouling on the Performance of a Plate and Shell Type Heat Exchanger, Vaasan yliopisto, 2015. | spa |
dcterms.bibliographicCitation | [30] V. Zare, S.M.S. Mahmoudi, M. Yari, M. Amidpour, “Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle, Energy 47 (1) (2012) 271–283. | spa |
dcterms.bibliographicCitation | [31] A. Bejan, G. Tsatsaronis, M.J. Moran, Optimization and thermal Design, Willey, 1996. | spa |
dcterms.bibliographicCitation | [32] V. Zare, S.M.S. Mahmoudi, M. Yari, “An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle, Energy 61 (2013) 397–409. | spa |
dcterms.bibliographicCitation | [33] H. Ghaebi, M. Amidpour, S. Karimkashi, O. Rezayan, Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover, Int. J. Energy Res. 35 (8) (2011) 697–709. | spa |
dcterms.bibliographicCitation | [34] Z. Guo-Yan, W. En, T. Shan-Tung, “Techno-economic study on compact heat exchangers, Int. J. Energy Res. 32 (12) (2008) 1119–1127. | spa |
dcterms.bibliographicCitation | [35] H. Nami, S.M.S. Mahmoudi, A. Nemati, Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2), Appl. Therm. Eng. 110 (2017) 1315–1330. | spa |
dcterms.bibliographicCitation | [36] L.S. Vieira, J.L. Donatelli, M.E. Cruz, Mathematical exergoeconomic optimization of a complex cogeneration plant aided by a professional process simulator, Appl. Therm. Eng. 26 (5–6) (2006) 654–662. | spa |
dcterms.bibliographicCitation | [37] B.F. Tchanche, Low-grade Heat Conversion into Power Using Small Scale Organic Rankine Cycles, Ph.D Thesis, 2010. | spa |
dcterms.bibliographicCitation | [38] Z. Han, P. Li, X. Han, Z. Mei, Z. Wang, Thermo-economic performance analysis of a regenerative superheating organic rankine cycle for waste heat recovery, Energies 10 (10) (2017) 1593. | spa |
dcterms.bibliographicCitation | [39] M. Preißinger, D. Brüggemann, Thermoeconomic evaluation of modular organic Rankine cycles for waste heat recovery over a broad range of heat source temperatures and capacities, Energies 10 (3) (2017) 269. | spa |
dcterms.bibliographicCitation | [40] L.G.O. Quinones, L.F.A. Viana, G.E.V. Ochoa, Thermal design and rating of a shell and tube heat exchanger using a matlab® GUI, Indian J. Sci. Technol. 10 (25) (2017) 1–9. | spa |
dcterms.bibliographicCitation | [41] Y. Jiang, E. Liese, S.E. Zitney, D. Bhattacharyya, Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles, Appl. Energy 231 (2018) 1019–1032. | spa |
dcterms.bibliographicCitation | [42] G. Valencia, J. Nú~nez, J. Duarte, Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines, Entropy 21 (7) (2019). | spa |
dcterms.bibliographicCitation | [43] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1995, pp. 1942–1948. | spa |
dcterms.bibliographicCitation | [44] R. V Rao, V.K. Patel, Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm, Int. J. Therm. Sci. 49 (9) (2010) 1712–1721. | spa |
dcterms.bibliographicCitation | [45] V. Zare, A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants, Energy Convers. Manag. 105 (2015) 127–138. | spa |
dcterms.bibliographicCitation | [46] R.V. Padilla, Y.C. Soo Too, R. Benito, W. Stein, Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers, Appl. Energy 148 (2015) 348–365. | spa |
dcterms.bibliographicCitation | [47] V. Eveloy, W. Karunkeyoon, P. Rodgers, A. Al Alili, “Energy, exergy and economic analysis of an integrated solid oxide fuel cell–gas turbine–organic Rankine power generation system, Int. J. Hydrogen Energy 41 (31) (2016) 13843–13858. | spa |
dcterms.bibliographicCitation | [48] H.D.M. Hettiarachchi, M. Golubovic, W.M. Worek, Y. Ikegami, Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources, Energy 32 (9) (2007) 1698–1706. | spa |
dcterms.bibliographicCitation | [49] M.H. Ahmadi, et al., Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas, J. Nat. Gas Sci. Eng. 34 (2016) 428–438. | spa |
dcterms.bibliographicCitation | [50] Y. Feng, Y. Zhang, B. Li, J. Yang, Y. Shi, Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery, Energy 82 (2015) 664–677. | spa |
dcterms.bibliographicCitation | [51] E. Cayer, N. Galanis, H. Nesreddine, Parametric study and optimization of a transcritical power cycle using a low temperature source, Appl. Energy 87 (4) (2010) 1349–1357. | spa |
dcterms.bibliographicCitation | [52] S. Quoilin, S. Declaye, B.F. Tchanche, V. Lemort, Thermo-economic optimization of waste heat recovery Organic Rankine Cycles, Appl. Therm. Eng. 31 (14–15) (2011) 2885–2893. | spa |
dcterms.bibliographicCitation | [53] L. Tocci, T. Pal, I. Pesmazoglou, B. Franchetti, Small scale organic rankine cycle (ORC): a techno-economic review, Energies 10 (4) (2017) 413. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.audience | Público general | spa |
dc.identifier.doi | 10.1016/j.heliyon.2020.e04459 | |
dc.identifier.instname | Universidad del Atlántico | spa |
dc.identifier.reponame | Repositorio Universidad del Atlántico | spa |
dc.rights.cc | Attribution-NonCommercial 4.0 International | * |
dc.subject.keywords | Energy Mechanical engineering Thermodynamics Energy conservation Gas turbine Organic Rankine cycle Supercritical CO2 Brayton cycle Exergetic analysis Energy analysis Thermo-economic indicators PSO optimization | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | spa |
dc.type.spa | Artículo | spa |
dc.publisher.place | Barranquilla | spa |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | spa |
dc.publisher.discipline | Ingeniería Mecánica | spa |
dc.publisher.sede | Sede Norte | spa |