Mostrar el registro sencillo del ítem

dc.contributor.authorCardenas Gutierrez, Javier
dc.contributor.otherValencia Ochoa, Guillermo
dc.contributor.otherDuarte-Forero, Jorge
dc.date.accessioned2022-11-15T21:35:27Z
dc.date.available2022-11-15T21:35:27Z
dc.date.issued2020-07-10
dc.date.submitted2020-04-08
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1029
dc.description.abstractThis paper presents a comparative study on the energy, exergetic and thermo-economic performance of a novelty thermal power system integrated by a supercritical CO2 Brayton cycle, and a recuperative organic Rankine cycle (RORC) or a simple organic Rankine cycle (SORC). A thermodynamic model was developed applying the mass, energy and exergy balances to all the equipment, allowing to calculate the exergy destruction in the components. In addition, a sensitivity analysis allowed studying the effect of the primary turbine inlet temperature (TIT, PHIGH, rP and TC) on the net power generated, the thermal and exergy efficiency, and some thermo-economic indicators such as the payback period (PBP), the specific investment cost (SIC), and the levelized cost of energy (LCOE), when cyclohexane, acetone and toluene are used as working fluids in the bottoming organic Rankine cycle. The parametric study results show that cyclohexane is the organic fluid that presents the best thermo-economic performance, and the optimization with the PSO method conclude a 2308.91 USD/kWh in the SIC, 0.22 USD/ kWh in the LCOE, and 9.89 year in the PBP for the RORC system. Therefore, to obtain technical and economic viability, and increase the industrial applications of these thermal systems, thermo-economic optimizations must be proposed to obtain lower values of the evaluated performance indicators.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceElsevier Ltdspa
dc.titleA comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO2-ORC configurations as bottoming cyclesspa
dcterms.bibliographicCitation[1] H. Jouhara, M.A. Sayegh, Energy efficient thermal systems and processes, Therm. Sci. Eng. Prog. 7 (125–130) (2018) 1–5.spa
dcterms.bibliographicCitation[2] S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallef, V. Lemort, Techno-economic survey of organic rankine cycle (ORC) systems, Renew. Sustain. Energy Rev. 22 (2013) 168–186.spa
dcterms.bibliographicCitation[3] E.H. Wang, et al., Parametric analysis of a dual-loop ORC system for waste heat recovery of a diesel engine, Appl. Therm. Eng. 67 (1–2) (2014) 168–178.spa
dcterms.bibliographicCitation[4] J. Bao, L. Zhao, A review of working fluid and expander selections for organic Rankine cycle, Renew. Sustain. Energy Rev. 24 (2013) 325–342.spa
dcterms.bibliographicCitation[5] G. Valencia, A. Fontalvo, Y. C ardenas, J. Duarte, C. Isaza, Energy and exergy analysis of different exhaust waste heat recovery systems for natural gas engine based on ORC, Energies 12 (12) (2019).spa
dcterms.bibliographicCitation[6] A. Landelle, N. Tauveron, P. Haberschill, R. Revellin, S. Colasson, Organic Rankine cycle design and performance comparison based on experimental database, Appl. Energy 204 (2017) 1172–1187.spa
dcterms.bibliographicCitation[7] V. Dostal, M.J. Driscoll, P. Hejzlar, A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Massachusetts Institute of Technology, Department of Nuclear Engineering, 2004.spa
dcterms.bibliographicCitation[8] S. Su arez de la Fuente, D. Roberge, A.R. Greig, “Safety and CO2 emissions: implications of using organic fluids in a ship’s waste heat recovery system, Mar. Pol. 75 (2017) 191–203.spa
dcterms.bibliographicCitation[9] P. Garg, P. Kumar, K. Srinivasan, Supercritical carbon dioxide Brayton cycle for concentrated solar power, J. Supercrit. Fluids 76 (2013) 54–60.spa
dcterms.bibliographicCitation[10] J. Sarkar, Second law analysis of supercritical CO2 recompression Brayton cycle, Energy 34 (9) (2009) 1172–1178.spa
dcterms.bibliographicCitation[11] Z. Liu, Z. Liu, X. Yang, H. Zhai, X. Yang, Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system, Energy Convers. Manag. 205 (2020) 112391.spa
dcterms.bibliographicCitation[12] V. Dostal, P. Hejzlar, M.J. Driscoll, The supercritical carbon dioxide power cycle: comparison to other advanced power cycles, Nuclear technology 154 (3) (2006) 283–301spa
dcterms.bibliographicCitation[13] B.D. Iverson, T.M. Conboy, J.J. Pasch, A.M. Kruizenga, Supercritical CO2 Brayton cycles for solar-thermal energy, Appl. Energy 111 (2013) 957–970.spa
dcterms.bibliographicCitation[14] A. Toffolo, A. Lazzaretto, G. Manente, M. Paci, A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems, Appl. Energy 121 (2014) 219–232.spa
dcterms.bibliographicCitation[15] G. Valencia, C. Pe~naloza, J. Forero, Thermoeconomic optimization with PSO algorithm of waste heat recovery systems based on organic rankine cycle system for a natural gas engine, Energies 12 (Oct. 2019) 4165.spa
dcterms.bibliographicCitation[16] R.S. El-Emam, I. Dincer, Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle, Appl. Therm. Eng. 59 (1–2) (2013) 435–444.spa
dcterms.bibliographicCitation[17] G. Valencia, C. Pe~naloza, J. Forero, Thermo-economic assessment of a gas microturbine-absorption chiller trigeneration system under different compressor inlet air temperatures, Energies 12 (Dec. 2019) 4643.spa
dcterms.bibliographicCitation[18] G. Valencia, J. Duarte, C. Isaza-Roldan, Thermoeconomic analysis of different exhaust waste-heat recovery systems for natural gas engine based on ORC, Appl. Sci. 9 (19) (2019).spa
dcterms.bibliographicCitation[19] G.V. Ochoa, J.C. Gutierrez, J.D. Forero, Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine, Resources 9 (1) (2020).spa
dcterms.bibliographicCitation[20] G.V. Ochoa, J.P. Rojas, J.D. Forero, Advance exergo-economic analysis of a waste heat recovery system using ORC for a bottoming natural gas engine, Energies 13 (1) (2020) 267.spa
dcterms.bibliographicCitation[21] G. Ochoa, C. Pe~naloza, J. Rojas, Thermoeconomic modelling and parametric study of a simple ORC for the recovery of waste heat in a 2 MW gas engine under different working fluids, Appl. Sci. 9 (Oct. 2019) 4526.spa
dcterms.bibliographicCitation[22] M. Khaljani, R. Khoshbakhti Saray, K. Bahlouli, Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle, Energy Convers. Manag. 97 (2015) 154–165.spa
dcterms.bibliographicCitation[23] G.G. Esquivel-Pati~no, M. Serna-Gonz alez, F. N apoles-Rivera, Thermal integration of natural gas combined cycle power plants with CO2 capture systems and organic Rankine cycles, Energy Convers. Manag. 151 (2017) 334–342.spa
dcterms.bibliographicCitation[24] J. Song, X. Li, X. Ren, C. Gu, Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC), Energy 143 (2018) 406–416.spa
dcterms.bibliographicCitation[25] S. Katuli c, M. Cehil, D.R. Schneider, “Thermodynamic efficiency improvement of combined cycle power plant’s bottom cycle based on organic working fluids, Energy 147 (2018) 36–50.spa
dcterms.bibliographicCitation[26] S. Shaaban, Analysis of an integrated solar combined cycle with steam and organic Rankine cycles as bottoming cycles, Energy Convers. Manag. 126 (2016) 1003–1012.spa
dcterms.bibliographicCitation[27] H. Singh, R.S. Mishra, Performance analysis of solar parabolic trough collectors driven combined supercritical CO2 and organic Rankine cycle, Eng. Sci. Technol. – Int. J. 21 (3) (2018) 451–464.spa
dcterms.bibliographicCitation[28] G.V. Ochoa, C. Isaza-Roldan, J.D. Forero, A phenomenological base semi-physical thermodynamic model for the cylinder and exhaust manifold of a natural gas 2- megawatt four-stroke internal combustion engine, Heliyon 5 (10) (Oct. 2019), e02700.spa
dcterms.bibliographicCitation[29] T. Paanu, P. Aho, J.K. Ekman, H. Saveljeff, S. Niemi, Effect of the Exhaust Gas Side Fouling on the Performance of a Plate and Shell Type Heat Exchanger, Vaasan yliopisto, 2015.spa
dcterms.bibliographicCitation[30] V. Zare, S.M.S. Mahmoudi, M. Yari, M. Amidpour, “Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle, Energy 47 (1) (2012) 271–283.spa
dcterms.bibliographicCitation[31] A. Bejan, G. Tsatsaronis, M.J. Moran, Optimization and thermal Design, Willey, 1996.spa
dcterms.bibliographicCitation[32] V. Zare, S.M.S. Mahmoudi, M. Yari, “An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle, Energy 61 (2013) 397–409.spa
dcterms.bibliographicCitation[33] H. Ghaebi, M. Amidpour, S. Karimkashi, O. Rezayan, Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover, Int. J. Energy Res. 35 (8) (2011) 697–709.spa
dcterms.bibliographicCitation[34] Z. Guo-Yan, W. En, T. Shan-Tung, “Techno-economic study on compact heat exchangers, Int. J. Energy Res. 32 (12) (2008) 1119–1127.spa
dcterms.bibliographicCitation[35] H. Nami, S.M.S. Mahmoudi, A. Nemati, Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2), Appl. Therm. Eng. 110 (2017) 1315–1330.spa
dcterms.bibliographicCitation[36] L.S. Vieira, J.L. Donatelli, M.E. Cruz, Mathematical exergoeconomic optimization of a complex cogeneration plant aided by a professional process simulator, Appl. Therm. Eng. 26 (5–6) (2006) 654–662.spa
dcterms.bibliographicCitation[37] B.F. Tchanche, Low-grade Heat Conversion into Power Using Small Scale Organic Rankine Cycles, Ph.D Thesis, 2010.spa
dcterms.bibliographicCitation[38] Z. Han, P. Li, X. Han, Z. Mei, Z. Wang, Thermo-economic performance analysis of a regenerative superheating organic rankine cycle for waste heat recovery, Energies 10 (10) (2017) 1593.spa
dcterms.bibliographicCitation[39] M. Preißinger, D. Brüggemann, Thermoeconomic evaluation of modular organic Rankine cycles for waste heat recovery over a broad range of heat source temperatures and capacities, Energies 10 (3) (2017) 269.spa
dcterms.bibliographicCitation[40] L.G.O. Quinones, L.F.A. Viana, G.E.V. Ochoa, Thermal design and rating of a shell and tube heat exchanger using a matlab® GUI, Indian J. Sci. Technol. 10 (25) (2017) 1–9.spa
dcterms.bibliographicCitation[41] Y. Jiang, E. Liese, S.E. Zitney, D. Bhattacharyya, Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles, Appl. Energy 231 (2018) 1019–1032.spa
dcterms.bibliographicCitation[42] G. Valencia, J. Nú~nez, J. Duarte, Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines, Entropy 21 (7) (2019).spa
dcterms.bibliographicCitation[43] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1995, pp. 1942–1948.spa
dcterms.bibliographicCitation[44] R. V Rao, V.K. Patel, Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm, Int. J. Therm. Sci. 49 (9) (2010) 1712–1721.spa
dcterms.bibliographicCitation[45] V. Zare, A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants, Energy Convers. Manag. 105 (2015) 127–138.spa
dcterms.bibliographicCitation[46] R.V. Padilla, Y.C. Soo Too, R. Benito, W. Stein, Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers, Appl. Energy 148 (2015) 348–365.spa
dcterms.bibliographicCitation[47] V. Eveloy, W. Karunkeyoon, P. Rodgers, A. Al Alili, “Energy, exergy and economic analysis of an integrated solid oxide fuel cell–gas turbine–organic Rankine power generation system, Int. J. Hydrogen Energy 41 (31) (2016) 13843–13858.spa
dcterms.bibliographicCitation[48] H.D.M. Hettiarachchi, M. Golubovic, W.M. Worek, Y. Ikegami, Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources, Energy 32 (9) (2007) 1698–1706.spa
dcterms.bibliographicCitation[49] M.H. Ahmadi, et al., Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas, J. Nat. Gas Sci. Eng. 34 (2016) 428–438.spa
dcterms.bibliographicCitation[50] Y. Feng, Y. Zhang, B. Li, J. Yang, Y. Shi, Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery, Energy 82 (2015) 664–677.spa
dcterms.bibliographicCitation[51] E. Cayer, N. Galanis, H. Nesreddine, Parametric study and optimization of a transcritical power cycle using a low temperature source, Appl. Energy 87 (4) (2010) 1349–1357.spa
dcterms.bibliographicCitation[52] S. Quoilin, S. Declaye, B.F. Tchanche, V. Lemort, Thermo-economic optimization of waste heat recovery Organic Rankine Cycles, Appl. Therm. Eng. 31 (14–15) (2011) 2885–2893.spa
dcterms.bibliographicCitation[53] L. Tocci, T. Pal, I. Pesmazoglou, B. Franchetti, Small scale organic rankine cycle (ORC): a techno-economic review, Energies 10 (4) (2017) 413.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1016/j.heliyon.2020.e04459
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsEnergy Mechanical engineering Thermodynamics Energy conservation Gas turbine Organic Rankine cycle Supercritical CO2 Brayton cycle Exergetic analysis Energy analysis Thermo-economic indicators PSO optimizationspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineIngeniería Mecánicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por